
CS250P: Computer Systems Architecture
Introduction

Sang-Woo Jun

Fall 2022

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson



About Me

❑ Sang-Woo Jun
o Assistant Professor, UC Irvine
o Ph.D. (2018) @ MIT

❑ Research Interests
o Systems architecture
o Accelerators
o NVM storage
o Applications!

• Graphs, Bioinformatics, Machine learning…

❑ Some Nice Papers
o (ISCA, VLDB, FAST, FPGA, MICRO, …)

❑ Some Nice Media Coverage
o Engadget, The Next Platform, …



Why should we learn about 
computer architecture?

As a software developer

As a hardware architect



Why should software engineers 
learn about architecture?

Image source: www.smartlinkin.com.tw/Article/4826 (from Steve Jobs’ 2007 iPhone introduction)

http://www.smartlinkin.com.tw/Article/4826


Computer architecture effects example 1

❑ Multiplying two 2048 x 2048 matrices
o 16 MiB, doesn’t fit in any cache

❑ Machine: Intel i5-7400 @ 3.00GHz

❑ Time to transpose B is also counted

… …

×

A B
… × …

A BT

VS

63.19 seconds 10.39 seconds
(6x performance!)

for (i=0 to N) 

for (j=0 to N) 

for (k=0 to N)

C[i][j] += A[i][k] * B[k][j];



Computer architecture effects example 2

❑ Binary search vs. branchless 
binary search vs. linear search
o Where does this difference come 

from, and how do I exploit this?

o Architecture, assembly knowledge!

Source: “Performance comparison: linear search vs binary search.” dirtyhandscoding.wordpress.com



Computer architecture effects example 3

REALLY BAD scalability! Why?
Source: Scott Meyers, “CPU Caches and Why You care”



Computer architecture effects example 4

for (target in stream):

entities[target].string.append(char);

When entities.size < (1<<16): 1 GB/s

When entities.size > (1<<20): 200 MB/s

Why??



Not the most exciting time to be an architect…

Why do we need computer architects?
-- The simpler past

CPU

Memory
Program

Data

John Hennessy and David Patterson, “Computer Architecture: A Quantitative Approach”, 2018 (Cropped)

Bon-jae Koo, “Understanding of semiconductor memory architecture”, 2007 (Cropped)

Same program runs faster on more data tomorrow



Now: The end of Moore’s law and 
performance scaling



Running Into the Power Wall

0.007 μ



Crisis Averted With Manycores?

Bernd Hoefflinger, “ITRS 2028—International Roadmap of Semiconductors”, 2015

CPU

Program

DataMemory

CPU



The State of Computation

Lynn Freeny, Department of Energy

Department of Energy requested exaflop machines by 2020

1,000,000,000,000,000,000 floating point operations per second

Using 2016 technology, 200 MW

MIT Research nuclear reactor

6 MW

Average residential power consumption of San Francisco

178 MW

(Calculated from “Electricity Consumption by County”, California energy commission)

Using 2019 technology, 60 MW
Using 2022 technology, 20 MW

Heavy use of GPUs – Not bound to conventional threaded programming

Image: TheNextPlatform



Also, scaling size is becoming more difficult!

❑ Processor fabrication technology has always reduced in size
o As of 2022, transitioning from 5 nm to 3 nm

Image source: Intel

Q: Is sub-3nm even feasible?

Q: What does 3 nm even mean?



Only three players left?!

Image source: WikiChipYear 2000

Year 2008

Year 2022



We can’t keep doing what we used to

❑ Limited number of transistors, limited clock speed
o How to make the ABSOLUTE BEST of these resources?

❑ Timely example: Apple M1 Processor
o Claims to outperform everyone (per Apple)

o How?
• “8-wide decoder” […] “16 execution units (per core)”

• “(Estimated) 630-deep out-of-order”

• “Unified memory architecture”

• Hardware/software optimized for each other

Image source: Apple

What do these mean?

Not just apple! (Amazon, Microsoft, EU, …)



We can’t keep doing what we used to

Image source: Anandtech, “Amazon's Arm-based Graviton2 Against AMD and Intel: Comparing Cloud Compute”

Image source: TheNextPlatform, “Europe Inches Closer to Native RISC-V Reality”

AWS Graviton 2: 
64-Core ARM

European Processor Accelerator (EPAC):
4-Core RISC-V +

Variable Precision Accelerator +
Stencil and Tensor Accelerator



No better time to be an architect!

“There are Turing Awards waiting to be picked up 
if people would just work on these things.”

—David Patterson, 2018



And on that note…



Welcome to CS 250P!

❑ We will learn: 
o How modern processors are designed to achieve high performance 

o under which restrictions, and 

o actually get hands-on experience with hardware design 

o using a sequence of gently guided labs.



Course mechanics

❑ Lectures: TuTh 8:00- 9:20p @ EH 1200

❑ Discussions: Fri 7:00- 7:50p @ DBH 1100
o May not always have lectures, but myself or at least one TA will be there for 

questions (Esmerald Aliaj, Jiyoung Ahn)

❑ Grading: Homework: 50%, midterm exam: 25%, final exam: 25% 
(all grades curved).

❑ Labs?
o Will use a high-level hardware-description language (Bluespec)
o By the end of the class, you will have a highly efficient CPU design that actually 

runs on metal! (FPGA)



What this class does and doesn’t do

❑ It doesn’t do
o Bit-level control signal management

• (Not how modern processors are designed!)

o Details of the Intel x86 architecture
• Very complicated and cluttered with 

backwards compatibility from the 70s

• But will introduce parts of it! 

❑ It does do
o Constructive computer architecture 

experience
• Always working with a functional computer 

architecture design



Times have changed…

(1971) 2,250 transistors!
Intel 4004 Schematics drawn by Lajos Kintli and Fred Huettig

for the Intel 4004 50th anniversary project

(2020) +1 Billion transistors!
Intel Core-i7 die (Source: Intel)



We will use modern tools

❑ RISC-V
o Open-source Instruction-Set Architecture 

(ISA) based on what was learned in the past 
decades

❑ Bluespec
o A high-level hardware-description language

❑ Also, x86/ARM
o De-facto standards in the modern world



Some important ideas in 
computer architecture
❑ Pipelining

❑ Caches and their design

❑ Branch prediction

❑ Virtual memory and privileges

❑ Superscalar

❑ Simultaneous multithreading

❑ Speculative execution

❑ Out-of-Order Execution

❑ Vector operations

❑ Accelerators
How far can we go in CS250P?



Course outline

❑ Part 1: The Hardware-Software Interface
o What is a ‘good’ processor?
o Assembly programming and conventions

❑ Part 2: Recap of digital design
o Combinational and sequential circuits
o How their restrictions influence processor design

❑ Part 3: Computer Architecture
o Simple and pipelined processors
o Out-of-order and explicitly parallel architectures
o Caches and the memory hierarchy

❑ Part 4: Computer Systems
o Operating systems, Virtual memory


