CS250P: Computer Systems Architecture Introduction

Sang-Woo Jun Fall 2022

Large amount of material adapted from MIT 6.004, "Computation Structures", Morgan Kaufmann "Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition", and CS 152 Slides by Isaac Scherson

About Me

□ Sang-Woo Jun

- Assistant Professor, UC Irvine 1
- o Ph.D. (2018) @ MIT
- Research Interests
 - Systems architecture
 - \circ Accelerators
 - NVM storage
 - Applications!
 - Graphs, Bioinformatics, Machine learning...
- □ Some Nice Papers
 - (ISCA, VLDB, FAST, FPGA, MICRO, ...)
- □ Some Nice Media Coverage
 - Engadget, The Next Platform, ...

Why should we learn about computer architecture?

As a software developer

As a hardware architect

Why should software engineers learn about architecture?

Image source: <u>www.smartlinkin.com.tw/Article/4826</u> (from Steve Jobs' 2007 iPhone introduction)

VS

- Multiplying two 2048 x 2048 matrices
 o 16 MiB, doesn't fit in any cache
- □ Machine: Intel i5-7400 @ 3.00GHz
- □ Time to transpose B is also counted

63.19 seconds

```
for (i=0 to N)
for (j=0 to N)
  for (k=0 to N)
      C[i][j] += A[i][k] * B[k][j];
```


10.39 seconds (6x performance!)

- Binary search vs. branchless binary search vs. linear search
 - Where does this difference come from, and how do I exploit this?
 - Architecture, assembly knowledge!

REALLY BAD scalability! Why?

Source: Scott Meyers, "CPU Caches and Why You care"

for (target in stream):
 entities[target].string.append(char);

When entities.size < (1<<16): 1 GB/s

When entities.size > (1<<20): 200 MB/s

Why??

Why do we need computer architects? -- The simpler past

John Hennessy and David Patterson, "Computer Architecture: A Quantitative Approach", 2018 (Cropped) Bon-jae Koo, "Understanding of semiconductor memory architecture", 2007 (Cropped)

Now: The end of Moore's law and performance scaling

Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e 2018

* "New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies" – Fred Pollack, Intel Corp. Micro32 conference key note - 1999.

Crisis Averted With Manycores?

Bernd Hoefflinger, "ITRS 2028—International Roadmap of Semiconductors", 2015

The State of C

Department of Energy requested e

Heavy use of GPUs

1,000,000,000,000,000,000 floating p

Using 2016 technolog Using 2019 technolog, 20 MW

mtialeseerethcaneleseption to francisco

ded programming

1684444

Image: TheNextPlatform (Calculated from "Electricity Consumption by County", California energy commission)

Lynn Freeny, Department of Energy

Also, scaling size is becoming more difficult!

- Processor fabrication technology has always reduced in size
 - $\,\circ\,\,$ As of 2022, transitioning from 5 nm to 3 nm

Q: Is sub-3nm even feasible?

Q: What does 3 nm even mean?

rear 200	U	Nun	nber of Semic	onductor Manuf	acturers with a	Cutting Edge I	Logic Fab				
SilTerra											
X-FAB											
Dongbu HiTek											
ADI	ADI										
Atmel	Atmel										
Rohm	Rohm										
Sanyo	Sanyo										
Mitsubishi	Mitsubishi										
ON	ON		Y	-ar 2008	3						
Hitachi	Hitachi										
Cypress	Cypress	Cypress									
Sony	Sony	Sony									
Infineon	Infineon	Infineon									
Sharp	Sharp	Sharp									
Freescale	Freescale	Freescale									
Renesas (NEC)	Renesas	Renesas	Renesas	Renesas							
Toshiba	Toshiba	Toshiba	Toshiba	Toshiba							
Fujitsu	Fujitsu	Fujitsu	Fujitsu	Fujitsu							
ті	TI	TI	ті	ті							
Panasonic	Panasonic	Panasonic	Panasonic	Panasonic	Panasonic						
STMicroelectronics	STM	STM	STM	STM	STM				Yea	ar 20	2
HLMC	HLMC		HLMC	HLMC	HLMC						Г
UMC	UMC	UMC	UMC	UMC	UMC		UMC				
IBM	IBM	IBM	IBM	IBM	IBM	IBM					
SMIC	SMIC	SMIC	SMIC	SMIC	SMIC		SMIC				
AMD	AMD	AMD	GlobalFoundries	GF	GF	GF	GF				F
Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	
TSMC	TSMC	TSMC	TSMC	TSMC	TSMC	TSMC	TSMC	TSMC	TSMC	TSMC	
Intel	Intel	Intel	Intel	Intel	Intel	Intel	Intel	Intel	Intel	Intel	

Only three players left?!

We can't keep doing what we used to

- □ Limited number of transistors, limited clock speed
 - $\circ~$ How to make the ABSOLUTE BEST of these resources?
- □ Timely example: Apple M1 Processor
 - Claims to outperform everyone (per Apple)
 - \circ How?
 - "8-wide decoder" [...] "16 execution units (per core)"
 - "(Estimated) 630-deep out-of-order"
 - "Unified memory architecture"
 - Hardware/software optimized for each other

What do these mean?

Not just apple! (Amazon, Microsoft, EU, ...)

We can't keep doing what we used to

AWS Graviton 2: 64-Core ARM

Amazon EC2 Throughput Per Dollar

European Processor Accelerator (EPAC):

4-Core RISC-V + Variable Precision Accelerator + Stencil and Tensor Accelerator

Image source: Anandtech, "Amazon's Arm-based Graviton2 Against AMD and Intel: Comparing Cloud Compute" Image source: TheNextPlatform, "Europe Inches Closer to Native RISC-V Reality"

No better time to be an architect!

"There are Turing Awards waiting to be picked up if people would just work on these things." —David Patterson, 2018

And on that note...

Welcome to CS 250P!

We will learn:

- \circ $\,$ How modern processors are designed to achieve high performance
- $\circ~$ under which restrictions, and
- $\circ~$ actually get hands-on experience with hardware design
- $\circ~$ using a sequence of gently guided labs.

Course mechanics

- Lectures: TuTh 8:00- 9:20p @ EH 1200
- Discussions: Fri 7:00- 7:50p @ DBH 1100
 - May not always have lectures, but myself or at least one TA will be there for questions (Esmerald Aliaj, Jiyoung Ahn)
- Grading: Homework: 50%, midterm exam: 25%, final exam: 25% (all grades curved).
- Labs?
 - Will use a high-level hardware-description language (Bluespec)
 - By the end of the class, you will have a highly efficient CPU design that actually runs on metal! (FPGA)

What this class does and doesn't do

It doesn't do

- Bit-level control signal management
 - (Not how modern processors are designed!)
- Details of the Intel x86 architecture
 - Very complicated and cluttered with backwards compatibility from the 70s
 - But will introduce parts of it!

It does do

- Constructive computer architecture experience
 - Always working with a functional computer architecture design

Times have changed...

(1971) 2,250 transistors! Intel 4004 Schematics drawn by Lajos Kintli and Fred Huettig for the Intel 4004 50th anniversary project (2020) +1 Billion transistors! Intel Core-i7 die (Source: Intel)

We will use modern tools

RISC-V

 Open-source Instruction-Set Architecture (ISA) based on what was learned in the past decades

Bluespec

A high-level hardware-description language

Also, x86/ARM

De-facto standards in the modern world

Some important ideas in computer architecture

- Pipelining
- Caches and their design
- Branch prediction
- Virtual memory and privileges
- □ Superscalar
- Simultaneous multithreading
- □ Speculative execution
- Out-of-Order Execution
- Vector operations
- Accelerators

Course outline

Part 1: The Hardware-Software Interface

- \circ What is a 'good' processor?
- Assembly programming and conventions

Part 2: Recap of digital design

- \circ $\,$ Combinational and sequential circuits $\,$
- \circ $\;$ How their restrictions influence processor design

Part 3: Computer Architecture

- \circ $\,$ Simple and pipelined processors $\,$
- \circ $\,$ Out-of-order and explicitly parallel architectures $\,$
- \circ $\,$ Caches and the memory hierarchy
- **Part 4: Computer Systems**
 - Operating systems, Virtual memory